

King Magnetics

High Performance Amorphous and Nanocrystalline Cores

Zhuhai King Magnetics Technology Co., Ltd.

Company Profile

Zhuhai King Magnetics Technology Co., Ltd. locates at Zhuhai Nanping Science and Technology Zone, mainly engaged in development, production and sales of nanocrystalline and amorphous materials, ribbons, cores and components.

Our company has advanced production equipments and precision test instruments. We have annual production capacity of ten million pieces of nanocrystalline and amorphous cores. Thanks to advanced production technology and production management system, our nanocrystalline and amorphous cores are high quality, high performance, good consistency and high stability.

We specialize in research of innovative nanocrystalline and amorphous magnetic materials. We can design special nanocrystalline and amorphous cores and components for customers, and help customers develop the best application solutions. Our cores are 100% tested before shipping.

Contents

1. Nanocrystalline cores for common mode chokes	- P6 -
2. Nanocrystalline cores for High Frequency Power Transformers	- P8 -
3. Amorphous C cores	- P10 -
4. Nanocrystalline C cores	- P11 -
5. Epoxy coated nanocrystalline cores and bead cores	- P12 -
6. High Br/Bs Nanocrystalline cores for magnetic amplifier (Mag-Amp)	- P13 -
7. Amorphous and nanocrystalline gap cores	- P14 -
8. Custom-made amorphous and nanocrystalline cores and magnetic components	- P15 -

Nanocrystalline Material

Fe-based nanocrystalline material with composition of mostly Fe with Cu,Nb,Si,B, which first by rapid quenching technology to form amorphous ribbon, then by crystalline heat treatment to gain fine grains with nano scale. Through this revolutionary process, we can get superior magnetic properties with high saturation flux density, high initial permeability, low coercivity, low core loss. Nanocrystalline material is an environmental protection, green, low carbon,high efficiency new magnetic material.

Fe-based nanocrystalline material can be applied to cores for common mode chokes, high frequency transformers, current transformers, driver transformers, network transformers, bead cores, magnetic amplifiers, filter inductors, reactors, PFC chokes in various electrical and electronic area, now have been widely used in switched mode power supply, household electrical appliance, industrial electrical equipment, communication power supply, network power supply, solar energy equipment, wind power generator, IGBT inverter power supply, laser power supply and medical equipment power supply.

Characteristics:

- > High permeability -- increasing inductance and reducing winding turns
- > High saturation induction -- minimizing size of component
- > High frequency -- suitable used in frequency range from 50Hz up to 100KHz
- > High curie temperature -- higher working temperature, continuous working at up to 120°C
- > Low coercivity -- increasing the efficiency and reducing hysteresis loss
- > Low core loss -- reducing energy consumed and minimizing temperature rise
- > Low magnetostriction -- low audible noise compared to traditional magnetic materials
- > Excellent thermal stability -- extremely small deviations from -20 $^{\circ}$ C to 120 $^{\circ}$ C
- > Low cost -- good choice to replace traditional materials like permalloy

Magnetic Properties:

- > Saturation induction Bs -- 1.25 T
- > Saturation magnetostriction λs -- 2×10⁻⁶
- > Curie temperature Tc -- 560 °C
- > Crystallization temperature Tx -- 510°C
- > Ribbon thickness -- 18~25 µm
- > Density d -- 7.25 g/cm³
- > Resistivity ρ -- 115 μ \Omega.cm
- > Vicker's Hardness Hv -- 880 kg/mm²

Magnetic Properties	Fe-Si Steel	Mn-Zn Ferrite	50Ni Permalloy	80Ni Permalloy	Cobalt-based Amorphous	Fe-based Amorphous	Fe-based Nanocrystalline
Saturation Flux Density Bs(T)	2.03	0.5	1.55	0.74	0.58	1.56	1.25
Coercivity Hc (A/m)	40	8	12	2.4	0.4	2.4	1.2
Initial Permeability μi	1500	3000	6000	40000	100000	5000	80000
Max Permeability μm	20000	6000	60000	200000	1000000	50000	400000
Electrical Resistivity (μΩ.cm)	50	5×10 ⁷	30	60	140	130	115
Curie Temperature Tc(℃)	750	220	500	450	250	399	570

Magnetic Properties Comparison: Amorphous and Nanocrystalline VS Traditional Soft Magnetic Materials:

Applications of Amorphous and Nanocrystalline Cores:

Application	Fe-based Amorphous	Co-based Amorphous	Fe-based Nanocrystalline
EMC, EMI EMC Common Mode Choke, EMI Filter			\checkmark
Hi-Fi Audio Transformer			\checkmark
High Frequency Transformer			\checkmark
Current Transformer		\checkmark	\checkmark
Magnetic Amplifier		\checkmark	\checkmark
Network transformer, driver transformer		\checkmark	\checkmark
Solar Inverter Reactor	\checkmark		
Car Audio output inductor	\checkmark		
PFC choke, Out filter inductor	\checkmark		

Typical hysteresis loop and core loss characteristics:

Typical temperature characteristics:

Typical frequency characteristics: Nanocrystalline core vs. Ferrite

Nanocrystalline Cores for EMC Common Mode Chokes

Amorphous and nanocrystalline technologies are very important technology in modem magnetic materials, cores and inductive components. After long term experiment and development, King Magnetics has developed series of high quality nanocrystalline cores for common mode chokes.

Nanocrystalline cores have very high permeability over low frequency to high frequency. They are very suitable for common mode chokes used as EMC filters to compress conducted common mode noise. Compared to traditional ferrite cores, nanocrystalline cores have a lot of advantages as high inductance, good filter effective, small size and volume, lower turns of copper wire, lower power consumption and high efficiency.

Nanocrystalline cores have very high curie temperature about 560 $^{\circ}$ C, much higher than traditional ferrite core about 200 $^{\circ}$ C. High curie temperature make nanocrystalline core excellent thermal stability, and can continuous working at up to 120 $^{\circ}$ C environment. Nanocrystalline cores is the best choice for application of common mode choke.

Applications:

- > EMC common mode choke, EMI Filter
- > Switched mode power supply
- > Computer power supply, server power supply
- > Communication and network power supply
- > Laser and X-ray power supply
- > Welding equipment and Electrical plating power supply
- > Solar energy equipment and Wind power generator
- > Household electrical appliance, like air conditioner
- > (UPS) Uninterruptable power supply (UPS)
- > Variable Frequency Device (VFD) and servo motor
- > Inducted heating equipment
- > High-speed railway power supplies
- > Electric vehicles and charger devices

Characteristics:

- > High permeability -- increasing inductance and reducing size and winding turns
- > High saturation flux density -- not easy to saturation
- > Low loss -- increasing efficiency and reducing power consumption
- > High unbalance current withstand -- suitable for high unbalance current application

Core dimension **Case dimension** Eff. cross area Mean path A_L (μΗ) A_L (μΗ) (mm) (mm) (cm²)length (cm) 10KHz,0.25V 100KHz,0.25V Part No. id OD ID od h н Ae Lm Typical AL** Typical A_{L**} KMN986545 9.8 6.5 4.5 11.3 5 6.1 0.06 2.6 25.5 6.4 KMN120805 12 8 5 14.4 6.5 7.0 0.08 3.1 28.0 6.8 17.1 6.7 KMN151005 15 10 4.5 8.3 7.1 0.09 3.9 27.0 KMN161006 16 10 6 17.9 0.14 4.1 43.0 10.1 8.1 8.1 KMN161008 16 10 8 17.8 8.4 9.9 0.19 46.1 11.5 4.1 30.0 KMN171206 17.5 12.6 6 19.2 10.9 0.11 4.7 6.9 8.1 KMN191510 19 15 10 21.2 13.5 12.3 0.16 5.3 36.1 8.8 21.7 13.6 KMN201208 20 12 8 0.25 5.0 10.8 9.9 55.2 KMN201210 20 12 10 22.6 12.5 0.31 5.0 62.4 15.6 10.5 15 10 23.6 12.8 12.7 0.23 5.7 41.6 10.4 KMN211510 21 13.6 8 22 KMN211308E* 21.3 13 8.8 0.24 5.5 44.1 11.0 KMN252010 25 20 10 28 17.2 13.2 0.20 7.1 28.4 7.3 25 16 10 28 14.0 13.1 0.35 6.4 67.0 15.5 KMN251610 KMN261610 25.5 16 10 28.4 13.9 13 0.39 6.6 57.1 14.3 KMN302010 30 20 10 33.2 17.8 13.3 0.39 7.9 59.3 14.0 KMN302015 30 20 15 33.6 17.8 17.8 0.59 7.9 88.0 20.0 KMN322010 32 20 10 34.4 18.0 13.1 0.47 8.2 57.6 14.4 KMN322015 32 20 15 34.6 17.9 18.2 0.70 8.2 86.4 21.6 77.7 KMN322115Y 32 21 15 35.5 18.5 19 0.64 8.3 19.4 24.2 40.8 0.80 9.7 82.1 20.5 KMN382415 37.8 15 21.6 18.3 40 25 43.8 0.88 10.2 KMN402515 15 21.6 18.8 99.0 23.1 40 20 KMN402520 25 45 21.5 24.7 1.17 10.2 115.2 28.8 KMN403215 40 44.9 32 15 28.8 18.8 0.47 11.3 48.0 11.3 KMN453015 45 30 15 48.3 26.4 18.2 0.88 11.8 87.6 20.0 KMN462725 46 27 25 48.8 24.6 27.8 1.85 11.5 162.4 40.6 KMN503220 50 32 20 53.8 28.5 23.8 1.40 12.9 109.6 27.4 40 14.1 KMN504020 50 20 53.6 37.1 23 0.78 45.0 13.5 50 25 69 1.27 17.7 59.0 17.5 KMN635025 63 46 29 KMN644020 64 40 20 68.2 37 23.5 1.87 16.3 115.2 28.8 40 67.4 144.0 KMN644025 64 25 37 29.2 2.34 16.3 36.0 KMN805020 80 50 20 83.8 46.6 25.0 2.34 20.4 94.0 28.0 KMN805025 80 50 25 84.0 47.0 29.0 2.93 20.4 144.0 36.0 KMN906020 90 60 20 95.4 54.7 24.7 2.34 23.6 81.0 25.1 KMN1008020 100 20 105 1.56 28.3 55.5 13.9 80 75 25 2.54 KMN1027625 102 76 25 108.1 70.0 30.3 27.9 91.1 22.8 KMN1108025 110 80 25 116.6 31.4 2.93 29.8 98.5 24.6 73.8 KMN1309030 130 90 30 135.3 84.9 36.5 4.68 34.5 136.1 34.0 KMN14010025 140 100 25 145 3.90 37.7 91.0 26.0 95 30 KMN16013025 160 130 165 125 2.93 45.5 56.5 25 30 16.1 KMN17012025 120 45.5 170 25 175 115 30 4.88 94.1 26.9 KMN20016030 200 160 30 207 153 4.50 56.5 37 72.8 20.8

Nanocrystalline cores for EMC common mode chokes

These cores are our standard cores in plastic case, custom sizes are available.

* Epoxy coated.

** AL value tolerance: +50%/-30%

Nanocrystalline cores for High Frequency Power Transformers

Nanocrystalline cores for high frequency and high power transformers have high saturation flux density, high permeability, low core loss, low saturation magnetostriction and good temperature stability. Widely used as main transformer cores for uni-polar, push-pull or bi-polar type high frequency and high power switched mode power supply.

High saturation flux density and low core loss are the primary demands of a transformer, and nanocrystalline core has the both properties. Transformers with nanocrystalline cores have features of small size, high efficiency, low loss, low temperature rise and excellent temperature stability.

Applications:

- > High frequency and high power switched mode power supply
- > Laser power supply
- > Inverter welding machine
- > Electrical plating power supply
- > Medium and high frequency heating power supply
- > X X-ray power supply
- > IGBT IGBT Inverter
- > Communication power supplies

Characteristics:

> High saturation flux density - reducing volume of transformer

> High permeability and low coercivity -- improving efficiency and reducing magnetized current and reducing copper loss

- > Low core loss increasing efficiency and reducing power consumption
- > Excellent thermal stability continuous working at up to $120^{\circ}C$
- > Low magnetostriction low audible noise compared to other materials

King Magnetics - High Performance Amorphous and Nanocrystalline Cores and Components Comparison: nanocrystalline cores vs. ferrite cores

Properties	Nanocrystalline cores	Ferrite cores
Saturate Flux Density (T)	1.25	0.5
Remanence (T) (20 kHz)	< 0.3	0.2
Core loss (20 kHz/0.2T) (W/Kg)	< 3.4	7.5
Core loss (20 kHz/0.5T) (W/Kg)	< 30	Can not use
Core loss (50 kHz/0.3T) (W/Kg)	< 40	Can not use
Permeability (20 kHz) (Gs/Oe)	> 20,000	2,000
Static Coercivity (A/m)	< 2	6
Saturation magnetostriction (10 ⁻⁶)	< 2	4
Electrical Resistivity (μΩ.cm)	90	10 ⁶
Curie temperature (°C)	560	< 200
Stacking factor	> 0.75	N/A

Specifications :

Nanocrystalline Cores for High Frequency Power Transformers

Part No.	Core	dimer (mm)	nension Case dimension nm) (mm)		nsion	Eff. Cross area (cm²)	Mean path length (cm)	Weight (g)	Power @ 20KHz (Kw)	Case Type *	
	od	id	h	OD	ID	н	Ae	Lm	Wt	Р	
KMN503220T	50	32	20	53.8	28.5	24	1.40	12.9	131	0.5-1	0
KMN644020T	64	40	20	68.2	37	23.5	1.87	16.3	222	1-3	0
KMN805025T	80	50	25	83.5	47.2	28.8	2.93	20.4	433	3-5	0
KMN805025S	80	50	25	83.5	47.2	28.8	2.93	20.4	433	3-5	Ω
KMN1006020T	100	60	20	106	55	25	3.12	25.1	568	5-7	0
KMN1006020S	100	60	20	106	55	25	3.12	25.1	568	5-7	Ω
KMN1207020T	120	70	20	125	65	26	3.90	29.8	843	7-10	0
KMN1207020S	120	70	20	125	65	26	3.90	29.8	843	7-10	П
KMN1207030T	120	70	30	125	65	36	5.85	29.8	1265	10-15	0
KMN1207030S	120	70	30	125	65	36	5.85	29.8	1265	10-15	П
KMN1308040T	130	80	40	136	75	46	7.80	33.0	1864	15-20	0
KMN1308040S	130	80	40	136	75	46	7.80	33.0	1864	15-20	Н
KMN1308050T	130	80	50	136	75	56	9.75	33.0	2331	20-25	0
KMN1308050S	130	80	50	136	75	56	9.75	33.0	2331	20-25	Н

Other specifications are available according to customer's requirements.

* Case Type:

	O - Toroidal core		Ω and Π - Toroida	H - Toroidal core with 4 legs			
0		Ω		П		Н	Ó

Amorphous C Cores

Amorphous C cores have high saturation flux density, low core loss, high permeability. They are suitable for PFC choke, output filter inductor, solar inverter inductor, large current reactor, audio transformer and can be used under high frequency.

Applications:

- > Solar inverter
- > Large power output filter inductor
- > Large current reactor
- > Audio transformer

Characteristics:

- > High saturation flux density Large DC bias
- > Low core loss Low temperature rise

Specifications:

Part No.			Core dir (m	nension m)		Mean path length (cm)	Eff. cross area (cm²)	Weight (g)	
	Α	В	С	D	E	F	Lm	Ae	Wt
KMAC-20	11	13	50	30	35	72	15.7	2.94	331
KMAC-32	13	15	56	30	41	82	17.9	3.47	447
KMAC-40	13	15	56	35	41	82	17.9	4.05	522
KMAC-50	16	20	70	25	52	102	22.7	3.56	580
KMAC-63	16	20	70	30	52	102	22.7	4.27	696
KMAC-80	16	20	70	40	52	102	22.7	5.70	928
KMAC-100	16	20	70	45	52	102	22.7	6.41	1043
KMAC-125	19	25	83	35	63	121	27.2	5.92	1157
KMAC-160	19	25	83	40	63	121	27.2	6.76	1322
KMAC-200	19	25	83	50	63	121	27.2	8.46	1653
KMAC-250	19	25	90	60	63	128	28.6	10.15	2085
KMAC-320	22	35	85	50	79	129	30.6	9.79	2148
KMAC-400	22	35	85	65	79	129	30.6	12.73	2793
KMAC-500	25	40	85	55	90	135	32.5	12.24	2856
KMAC-630	25	40	85	70	90	135	32.5	15.58	3635
KMAC-800A	25	40	85	85	90	135	32.5	18.91	4414
KMAC-800B	30	40	95	85	100	155	36.1	22.70	5879
KMAC-1000	33	40	105	85	106	171	39.0	24.96	6994

Customers made and customers design are available.

Nanocrystalline c cores are made of high permeability and low core loss nanocrystalline ribbon. Nanocrystaline c cores perform better than amorphous c cores. Suitable for high frequency transformer, high class audio transformer, PFC choke, output inductors.

Applications:

> High frequency transformer

> Hi-Fi Audio transformer

Characteristics:

- > Low core loss can be used at frequency 20KHz 50KHz
- > High saturation induction 1.25T, much higher than ferrite core
- > Low magnetostriction low noise

Part No.			Core dii (m	mension ım)		Mean path length (cm)	Eff. cross area (cm²)	Weight (g)	
	Α	В	С	D	E	F	Lm	Ae	Wt
KMNC-6.3	10	11	33	20	31	53	11.6	1.56	141
KMNC-8	11	13	30	20	35	52	11.7	1.72	157
KMNC-10	11	13	40	20	35	62	13.7	1.72	184
KMNC-16A	11	13	40	25	35	62	13.7	2.15	230
KMNC-16B	11	13	50	25	35	72	15.7	2.15	263
KMNC-20	11	13	50	30	35	72	15.7	2.57	316
KMNC-25	13	15	56	25	41	82	17.9	2.54	355
KMNC-32	13	15	56	30	41	82	17.9	3.04	426
KMNC-40	13	15	56	35	41	82	17.9	3.55	497
KMNC-50	16	20	70	25	52	102	22.7	3.12	552
KMNC-63	16	20	70	30	52	102	22.7	3.74	663
KMNC-80	16	20	70	40	52	102	22.7	4.99	884
KMNC-100	16	20	70	45	52	102	22.7	5.62	994
KMNC-125	19	25	83	35	63	121	27.2	5.19	1102
KMNC-160	19	25	83	40	63	121	27.2	5.93	1260
KMNC-200	19	25	83	50	63	121	27.2	7.41	1575
KMNC-250	19	25	90	60	63	128	28.6	8.89	1987
KMNC-320	22	35	85	50	79	129	30.6	8.58	2047
KMNC-400	22	35	85	65	79	129	30.6	11.15	2662
KMNC-500	25	40	85	55	90	135	32.5	10.73	2722
KMNC-630	25	40	85	70	90	135	32.5	13.65	3464
KMNC-800A	25	40	85	85	90	135	32.5	16.58	4207
KMNC-800B	30	40	95	85	100	155	36.1	19.89	5602
KMNC-1000	33	40	105	85	106	171	39.0	21.88	6665

Customers made and design are available.

Epoxy Coated Nanocrystalline Cores and Bead Cores

Epoxy coated nanocrystalline cores enable reducing core volume and keeping excellent magnetic performance. It is convenience for engineer to design various dimensions of nanocrystalline cores. This kind of cores also reduce copper wires due to core volume reduced, reduce cost as well.

Applications:

- > Nanocrystalline bead core for noise suppressor for semiconductor components (e.g. Mosfet)
- > IGBT Driver transformer
- > Current transformer
- > High Frequency Power transformer
- > ISDN Network transformer
- > EMI/EMC Filter Common mode choke
- > HD camera signal transformer

Characteristics:

- > Small size Reducing volume of component
 - Reducing copper wires
 - Reducing total cost
- > Size can be custom made Help customers quick design and mold cost free
- > High insulation strength Withstand voltage meets 1000V requirement
- > High permeability 3X higher inductance value than ferrite core

Part No.	Core dimension (mm)			Finished dimension (mm)			Eff. cross area (cm²)	Mean path length (cm)	A∟ (μH) 10KHz,0.25V
	od	id	h	OD	ID	н	Ae	Lm	A∟ (Min)
KMN040203E	4	2.2	3.2	4.5	1.7	3.8	0.021	0.97	10.0
KMN060303E	6	3	3.2	7.0	2.0	4.2	0.037	1.41	16.6
KMN060403E	6	4	3.2	7.0	3.0	4.2	0.025	1.57	10.0
KMN090503E	9	5	3.2	10.0	4.0	4.2	0.050	2.20	15.0
KMN120910E	11.8	8.7	10	12.8	7.7	11	0.121	3.22	25.0
KMN140905E	14	9	4.5	15	8	5.5	0.088	3.61	16.0
KMN211308E	21.3	13.6	8	22.3	12.6	9.0	0.240	5.48	33.0

Specifications:

Customers made and customers design are available.

High Br/Bs Nanocrystalline cores for magnetic amplifier (Mag-Amp)

Nanocrystalline cores for magnetic amplifiers(Mag-Amp), are heat treated by longitudinal magnetic field, have high saturation flux density(Bs), high rectangle ratio(Br/Bm), low coercivity(Hc) and high curie temperature.

Applications:

- > Desktop personal computer power supply
- > Server computer power supply
- > Switched mode power supply

Characteristics:

- > High saturation flux density Bs=1.25T Small size, lower turns
- > High rectangle ratio Br/Bm \geq 94% Low dead angle voltage, large working current
- > Low coercivity Hc << 36A/M @ 100KHz, 80A/M Low reset current, high efficiency

	Cor	e dimen	sion	Finish	ed dime	ension	Eff. cross area	Mean path	Saturation Flux
Part No.		(mm)		(mm)			(cm²)	length (cm)	(µWb)
	od	id	h	OD	ID	Н	Ae	Lm	2Φm
KMN120803Z	12	8.4	3.2	14.7	5.9	5.4	0.045	3.20	10.6
KMN120804Z	11.8	8.7	4.2	13.9	6.8	6.0	0.051	3.22	11.9
KMN120805Z	12	8	4.5	14.7	6.2	6.8	0.070	3.14	16.5
KMN151005Z	15	10	4.5	17	8	7.1	0.088	3.93	20.6
KMN191505Z	19	15	5	21	13	6.6	0.078	5.34	18.3

Specifications:

Customers made and customers design are available.

We can also custom made **Co-based amorphous cores** for magnetic amplifier. Co-base mag-amp core has more lower coercivity and higher efficiency, suitable for high-end computer power supplies.

Amorphous and nanocrystalline gap cores have high saturation flux density, low core loss, high permeability, can withstand large working current. They are suitable for PFC choke, output filter inductor, solar inverter inductor, hall effect transducer.

Applications:

- > PFC choke
- > Output filter inductor
- > Solar inverter
- > Hall effect transducer

Characteristics:

- > High saturation flux density -- Not easy to saturate, Large DC bias
- > Gap core Withstand large working current
- > Low core loss Low temperature rise

Specifications:	

Part No.	Cor	e dimen (mm)	sion	Finish	ed dime	ension	Eff. cross	Mean path	Gap (mm)	AL Value*
Fart NO.	od	id	h	OD	ID	н	Ae	Lm	Lg	AL
KMAG201208	20	12	8	21.7	10.8	9.9	0.28	5.0	0.5	0.125
KMAG261610	26	16	10	28.3	14.0	12.8	0.44	6.6	0.5	0.165
KMAG402515	40	25	15	44.4	22.0	18.8	0.99	10.2	0.8	0.240
KMAG603525	60	35	25	64.0	31.0	29.0	2.75	14.9	5.0	0.148

Customers made and customers design are available.

* AL Value is tested @ 1KHz, 0.25V, the value is only for reference. AL value is gap dependent, we can make different gap according to the inductance needed.

King Magnetics - High Performance Amorphous and Nanocrystalline Cores and Components Custom Products

We can custom-made all kinds of nanocrystalline cores, amorphous cores and components. We work with worldwide universities, research institutes, laboratories, company R&D departments. Our cores are of the best quality.

- > Nanocrystalline cores with epoxy coated
- > Nanocrystalline rectangular core
- > Oval shape nanocrystalline core
- > Nanocrystalline C core
- > Amorphous multi-cut core
- > Amorphous and nanocrystalline block cores
- > Amorphous and nanocrystalline gapped core
- > Nanocrystalline common mode choke
- > Amorphous and nanocrystalline inductor
- > Amorphous and nanocrystalline sheet.

More information please visit our website: www.kingmagnetics.com

Zhuhai King Magnetics Technology Co., Ltd.

Address: 1/F, No. 5, Pingxi 5 Road, Nanping Science and Technolog Zone, Zhuhai, Guangdong, China, 519060
Tel: +86-756-8305985; +86-158-1980-9198
Website: www.kingmagnetics.com Chinese version: www.kingmagnetics.cn
Email: core@kingmagnetics.com kmat@foxmail.com

Protect forest resources, Before printing this catalog, think again the forest.

Copyright © KING MAGNETICS 2022. All Rights Reserved.